#########################################################################
# reacDiffConcGradinet.py
#
# Filename:reacDiffConcGradinet.py
# Author: Upinder S. Bhalla
# Maintainer:
# Created: Oct 12 16:26:05 2014 (+0530)
# Version:
# Last-Updated: May 16 2017
# By: Upinder S. Bhalla
# Update #:
# URL:
# Keywords:
# Compatibility:
#
#
# Commentary:
#
#
# Change log:
## This program is part of 'MOOSE', the
## Messaging Object Oriented Simulation Environment.
## Copyright (C) 2013 Upinder S. Bhalla. and NCBS
## It is made available under the terms of the
## GNU Lesser General Public License version 2.1
## See the file COPYING.LIB for the full notice.
#########################################################################
import math
import pylab
import numpy
import moose
diffConst = 1e-12
def makeCyl( num, concInit, radius, x0, x1 ):
compt = moose.CylMesh( '/model/compt' + num )
compt.x0 = x0
compt.x1 = x1
compt.y0 = 0
compt.y1 = 0
compt.z0 = 0
compt.z1 = 0
compt.r0 = radius
compt.r1 = radius
compt.diffLength = x1-x0
a = moose.Pool( compt.path + '/a' )
b = moose.Pool( compt.path + '/b' + num )
reac = moose.Reac( compt.path + '/reac' )
moose.connect( reac, 'sub', a, 'reac' )
moose.connect( reac, 'prd', b, 'reac' )
a.diffConst = diffConst
a.concInit = concInit
b.concInit = concInit
reac.Kf = 0.1
reac.Kb = 0.1
return a, b, compt
def makeModel():
radius = 1e-6
len0 = 4e-6
len1 = 2e-6
len2 = 1e-6
# create container for model
model = moose.Neutral( 'model' )
a0, b0, compt0 = makeCyl( '0', 1, radius, -len0, 0 )
a1, b1, compt1 = makeCyl( '1', 2, radius, 0, len1 )
a2, b2, compt2 = makeCyl( '2', 6, radius, len1, len1 + len2 )
print(('Volumes = ', compt0.volume, compt1.volume, compt2.volume))
# create molecules and reactions
reac0 = moose.Reac( '/model/compt1/reac0' )
reac1 = moose.Reac( '/model/compt1/reac1' )
# connect them up for reactions
moose.connect( reac0, 'sub', b0, 'reac' )
moose.connect( reac0, 'prd', b1, 'reac' )
moose.connect( reac1, 'sub', b1, 'reac' )
moose.connect( reac1, 'prd', b2, 'reac' )
# Assign parameters
reac0.Kf = 0.5
reac0.Kb = 0.05
reac1.Kf = 0.5
reac1.Kb = 0.05
# Create the output tables
graphs = moose.Neutral( '/model/graphs' )
outputA0 = moose.Table2 ( '/model/graphs/concA0' )
outputA1 = moose.Table2 ( '/model/graphs/concA1' )
outputA2 = moose.Table2 ( '/model/graphs/concA2' )
# connect up the tables
moose.connect( outputA0, 'requestOut', a0, 'getConc' );
moose.connect( outputA1, 'requestOut', a1, 'getConc' );
moose.connect( outputA2, 'requestOut', a2, 'getConc' );
# Build the solvers. No need for diffusion in this version.
ksolve0 = moose.Ksolve( '/model/compt0/ksolve0' )
ksolve1 = moose.Ksolve( '/model/compt1/ksolve1' )
ksolve2 = moose.Ksolve( '/model/compt2/ksolve2' )
dsolve0 = moose.Dsolve( '/model/compt0/dsolve0' )
dsolve1 = moose.Dsolve( '/model/compt1/dsolve1' )
dsolve2 = moose.Dsolve( '/model/compt2/dsolve2' )
stoich0 = moose.Stoich( '/model/compt0/stoich0' )
stoich1 = moose.Stoich( '/model/compt1/stoich1' )
stoich2 = moose.Stoich( '/model/compt2/stoich2' )
# Configure solvers
stoich0.compartment = compt0
stoich1.compartment = compt1
stoich2.compartment = compt2
stoich0.ksolve = ksolve0
stoich1.ksolve = ksolve1
stoich2.ksolve = ksolve2
stoich0.dsolve = dsolve0
stoich1.dsolve = dsolve1
stoich2.dsolve = dsolve2
stoich0.path = '/model/compt0/#'
stoich1.path = '/model/compt1/#'
stoich2.path = '/model/compt2/#'
dsolve1.buildMeshJunctions( dsolve0 )
dsolve1.buildMeshJunctions( dsolve2 )
stoich1.buildXreacs( stoich0 )
stoich1.buildXreacs( stoich2 )
stoich0.filterXreacs()
stoich1.filterXreacs()
stoich2.filterXreacs()
[docs]def main():
"""
This example shows how to maintain a conc gradient against diffusion ::
compt0 compt1 compt 2
a ......... a .......... a [Diffusion between compts]
|\ |\ |\
| | | [Reacs within compts]
\| \| \|
b0 <------->b1 <--------b2 [Reacs between compts]
4x 2x 1x [Ratios of vols of compts]
If there is no diffusion then the ratio of concs should be 1:10:100
If there is no x-compt reac, then clearly the concs should all be
the same, in this case they should be 2.0.
If both are happening then the final concs are 1.4, 2.5, 3.4.
"""
simdt = 0.1
plotdt = 0.1
runtime = 100.0
makeModel()
# MOOSE autoschedules everything.
moose.reinit()
moose.start( runtime ) # Run the model for 100 seconds.
initTot = 0
tot = 0
for x in moose.wildcardFind( '/model/compt#/#[ISA=PoolBase]' ):
print((x.name, x.conc))
tot += x.n
initTot += x.nInit
print(("Totals: expected = ", initTot, ", got: ", tot))
# Iterate through all plots, dump their contents to data.plot.
for x in moose.wildcardFind( '/model/graphs/conc#' ):
t = numpy.linspace( 0, runtime, x.vector.size ) # sec
pylab.plot( t, x.vector, label=x.name )
pylab.legend()
pylab.show()
quit()
# Run the 'main' if this script is executed standalone.
if __name__ == '__main__':
main()